

30.7.2020

Certificate of Qualification

ESD control items – Dr. Schutz® ESD Control Flooring

Resistance to groundable point of sample boards was measured in accordance with IEC 61340-4-1:2003+A1:2015. Person footwear flooring system was assessed in accordance with IEC 61340-4-5:2018. Table 1 shows the different flooring structures installed on plywood boards. Summary of the qualification is presented in Table 2. Detailed information on testing is provided in a technical report C697/2020 V1.1.

Table 1: Sample boards, Dr. Schutz®

1.	Non-conductive PVC, Copper wire, 2x ESD Color Base, 1x ESD Top Coat
2.	Non-conductive Epoxy, Copper wire, 2x ESD Color Base, 1x ESD Top Coat
3.	Non-conductive Epoxy, ESD HiCon Primer, Copper wire, 2x ESD Color Base, 1x ESD Top Coat
4.	Conductive PVC, 1x ESD Medicoat
5.	Conductive PVC, 2x ESD Base Coat, 1x ESD Top Coat
6.	Conductive PVC, 2x ESD Color Base, 1x ESD Top Coat
7.	Conductive Epoxy, 2x ESD Color Base, 1x ESD Top Coat

Product IDs: Dr. Schutz® - HiCon Primer, ESD Color Base, ESD Base Coat, ESD Top Coat and ESD Medicoat.

Client	Dr. Schutz, Holbeinstr. 17, 53175, Bonn, Germany			
Contact	Gerhard Schäfer, gsc@dr-schutz.com, +49 172 68 444 78			
Dates of Test	July 23 – 27, 2020			
Place of Test	Cascade Metrology, Electrostatics Laboratory, Hakulintie 32, 08500 Lohja, +358 4456 88 599			
Conditioning	48 hours, <i>T</i> = (23 ± 2) °, <i>RH</i> = (12 ± 3) %rh			
Test Equipment	MIT415/2 Sn 101489531, 3M 711 Sn 20980308, TDS 2022 Sn C031701			
Test Method(s)	IEC 61340-4-1:2003+A1:2015, IEC 61340-4-5:2018			
Assessment Criteria	IEC 61340-5-1:2016, IEC 61340-6-1:2018			
Summary of results and conclusions	The sample boards met the requirements of flooring used to ground personnel and equipment in reference to IEC 61340-6-1:2018 ($R_{gp} < 1 \text{ G}\Omega$). The sample boards met the electrostatic protected area requirements in reference to IEC 61340-5-1:2016 ($R_{gp} < 1 \text{ G}\Omega$). Personnel grounding requirements of the person/footwear/flooring system were met with the tested person/footwear combinations (IEC 61340-5-1:2016).			
Note	This certificate may only be reproduced in full, except with the prior written permission by issuing laboratory. The results relate only to the tested items.			
Date and place	Author			
	milline interestion			
Lohja 30.7.2020	Toni Viheriäkoski, CEO, Cascade Metrology, ESD Engineer			

Table 2: Summary of qualification tests

Toni Viheriäkoski Cascade metrology Oy, Hakulintie 32, 08500 Lohja toni.viheriakoski@cascademetrology.com

Qualification of ESD Control Floorings Dr. Schutz® ESD

Dr. Schutz[®]

1. Index

1. Index	. 2
2. Introduction and Scope	. 3
3. Flooring Samples under Test	. 3
4. Test Conditions and Instrumentation	. 4
5. Test Methods	. 5
6. Requirements	. 5
6.1 EPA Requirements	. 5
6.2 Personnel Grounding Requirements	. 6
7. Test Results	. 6
7.1 Flooring	. 6
7.2 Person/Footwear/Flooring System	. 8
8. Summary and Conclusions	11
9. Discussion and Suggestions	11
10. References	12

Document	No: C697/2020	Version: 1.2	Date: 7.8.2020				
Date(s) of test	23 27.7.2020						
Place of test	Electrostatics labora	tory, Hakulintie 32, 08500) Lohja				
Client	Dr. Schutz, Holbeins	str. 17, 53175, Bonn, Gerr	many				
Contact person	Gerhard Schäfer, gs	c@dr-schutz.com, +49 1	72 68 444 78				
Author(s)	Toni Viheriäkoski, E	SD Engineer, Certified by	NARTE, USA				
	08500 Lohja, Finland, GSM +358 44 5688 599						
Assessment	IEC 61340-6-1: 2018	Electrostatic control for	healthcare - General				
criteria	requirements for fac	ilities [1]					
	IEC 61340-5-1:2016, Protection of electronic devices from						
	electrostatic phenom	nena [2]					
Notes	Technical informatio	n of the report is classifie	d confidential				
Date and place	Signatu	ire	atir,				
	Tom	iherialaki					
Lohja 7.8.2020	Toni Viheriä	äkoski	GINER				

2. Introduction and Scope

Electrostatic properties of four reference floorings and seven sample boards of Dr. Schutz® ESD floorings were measured and analysed at the laboratory of Cascade Metrology Oy. *Summary of results and conclusions are presented in Section 8*.

3. Flooring Samples under Test

The sample boards were manufactured by Dr. Schutz. Coatings were installed on plywood boards (1150 mm × 750 mm × 10 mm). Samples 3 to 11 had groundable points (copper tape 100 mm × 10 mm × 40 μ m). Identifications of the flooring samples under test are shown in Table 2. Samples were tested as delivered without the treatment. Pictures of the samples are shown Figure 1.

Sample	Identification
1.	Reference 1, PVC, Non-conductive PVC sample.
2.	Reference 2, Epoxy cast flooring, Non-conductive epoxy sample,
	Shiny grey.
3.	Reference 3, PVC, Conductive PVC installed with conductive adhesive.
4.	Reference 4, Epoxy cast flooring, Conductive epoxy cast application on
	highly conductive primer layer, Shiny grey.
5.	Non-conductive PVC as reference 1, Copper wire, 2x ESD Color Base,
	1x ESD Top Coat, Mat grey.
6.	Non-conductive Epoxy as reference 2, Copper wire,
	2x ESD Color Base, 1x ESD Top Coat, Mat grey.
7.	Non-conductive Epoxy as reference 2, ESD HiCon Primer, Copper wire,
	2x ESD Color Base, 1x ESD Top Coat, Mat grey.
8.	Conductive PVC as reference 3, 1x ESD Medicoat.
9.	Conductive PVC as reference 3, 2x ESD Base Coat, 1x ESD Top Coat.
10.	Conductive PVC as reference 3, 2x ESD Color Base, 1x ESD Top Coat,
	Mat grey.
11.	Conductive Epoxy as reference 4, 2x ESD Color Base, 1x ESD Top Coat,
	Mat grey.

Table 2: Identifications of the sample boards

Product identifications: Dr. Schutz® - HiCon Primer, ESD Color Base, ESD Base Coat, ESD Top Coat and ESD Medicoat.

Figure 1: Samples under test

4. Test Conditions and Instrumentation

Test conditions are shown in Table 3. Measurement equipment is presented in Table 4.

Table 3	3: Ambient	test c	onditions

Conditioning	Temperature	Relative Humidity
48 h	23 °C ± 2 °C	12 %rh ± 3 %rh

Measurements are carried out, when applicable, in reference to ISO/IEC/EN 17025 "General Requirements for the Competence of Calibration and Testing Laboratories".

Table 4: Measurement equipment

Manufacturer	Туре	Serial number			
Tektronix	Oscilloscope	TDS 2022	C031701		
3M	Charge analyzer	711	20980308		
Megger	Isolation multimeter	BMM2000ESD	6111-550/061106/1387		
Megger Isolation multimeter		MIT415/2	101489531		
ETS Rg electrodes		850	4940, 4925		
Vaisala Humidity meter		HM 41	M1850876		

Calibrations are traceable to national standards laboratories through the unbroken chain of stated uncertainties. Calibration periods are based on the periodic verifications and traceable history of the instruments.

5. Test Methods

Resistance to ground of flooring was measured in accordance with IEC 61340-4-1:2003+A1:2015 [3] (Figure 2).

Person footwear flooring system was measured in accordance with IEC 61340-4-5:2018 [4] (Figures 3 and 4).

Figure 2: Resistance to ground

Figure 3: System resistance

Figure 4: Body potential

6. Requirements

6.1 EPA Requirements

Flooring: $R_{g} < 1 \text{ G}\Omega$ [1, 2].

6.2 Personnel Grounding Requirements

Person/footwear/flooring system: $R_g < 1 \text{ G}\Omega$ and body voltage [2], |V| < 100 V (average of 5 highest peaks) [2].

7. Test Results

7.1 Flooring

Resistance to Groundable Point [3]

Test results are shown in Tables 5 and 6. Electrification time was 15 s. The samples 1 and 2 did not have groundable point. Point to point resistance was measured instead.

Sample 1, R _p .			Samp	e 2, <i>R</i> _{p-p}	Sampl	e 3, R _{gp}	Sample 4, R gp		
Νο (V) (Ω)		(V)	(Ω)	(V)	(Ω)	(V)	(Ω)		
1	1 100 >1E+10 1		100	>1E+10	10	4E+05	10	9E+04	
2 100 >1E+10		100	>1E+10	10	3E+05	100) 1E+05		
3	100	>1E+10	100	>1E+10	10	4E+05	10	5E+05	
4 100		>1E+10	100	>1E+10	10	3E+05	500*	1E+05	
5	100	>1E+10	100	>1E+10	10	5E+05	10	9E+05	
6	100	>1E+10	100	>1E+10	10	6E+05	100	4E+07	
7 100		>1E+10	100	>1E+10	10	4E+05	500*	8E+04	
8 100		>1E+10	100	>1E+10	10	4E+05	500*	9E+04	
9	100	>1E+10	100	>1E+10	10	6E+05	100	2E+05	
10 100		>1E+10	100	>1E+10	10	4E+05	100	4E+05	
Min @ ≤ 100	V	>1E+10		>1E+10		3E+05		9E+04	
Max @ ≤ 10	0 V C	N/A		N/A		6E+05		N/A	
Median @ ≤	100 V	N/A		N/A		4E+05		7E+05	
Average		N/A		N/A		4E+05		N/A	
Geometric r	mean	N/A		N/A		4E+05		N/A	
Standard de	viation	N/A		N/A		1E+05		N/A	

Table 5: Resistance to groundable point, Reference samples 1 to 4

Note to sample 4: Significant voltage dependence was observed occasionally $(R_{gp} > 1 \text{ G}\Omega \text{ at } 100 \text{ V} \text{ when } 500 \text{ V} \text{ was applied})$

Cascade/Metrology

	Sai	mple 5	Sai	mple 6	Sai	mple 7	Sar	mple 8	Sa	mple 9	San	nple 10	San	nple 11
No	(V)	(Ω)	(V)	(Ω)	(V)	(Ω)	(V)	(Ω)	(V)	(Ω)	(V)	(Ω)	(V)	(Ω)
1	10	3E+05	10	1E+05	10	4E+04	100*	1E+05	10	2E+05	10	6E+04	10	2E+05
2	10	4E+05	10	2E+05	10	3E+04	10	9E+05	10	2E+05	10	7E+04	10	2E+05
3	10	3E+05	10	2E+05	10	4E+04	100*	8E+04	10	3E+05	10	7E+04	10	2E+05
4	10	3E+05	10	9E+04	10	5E+04	100*	1E+05	10	4E+05	10	8E+04	10	2E+05
5	10	3E+05	10	2E+05	10	4E+04	100*	1E+05	10	4E+05	10	5E+04	10	3E+05
6	10	3E+05	10	2E+05	10	3E+04	100*	2E+05	10	3E+05	10	6E+04	10	3E+05
7	10	4E+05	10	2E+05	10	3E+04	100*	2E+05	10	2E+05	10	7E+04	10	3E+05
8	10	4E+05	10	1E+05	10	2E+04	100*	9E+04	10	2E+05	10	7E+04	10	2E+05
9	10	3E+05	10	1E+05	10	3E+04	100*	1E+06	10	4E+05	10	5E+04	10	2E+05
10	10	2E+05	10	2E+05	10	4E+04	100*	1E+06	10	3E+05	10	6E+04	10	2E+05
Min @ ≤ 100 V		2E+05		9E+04		2E+04		8E+04		2E+05		5E+04		2E+05
Max @ ≤ 100 V		4E+05		2E+05		5E+04		1E+06		4E+05		8E+04		3E+05
Median @ ≤ 100 V		3E+05		2E+05		4E+04		1E+05		3E+05		7E+04		2E+05
Average		3E+05		2E+05		4E+04		4E+05		3E+05		6E+04		2E+05
Geometric mean		3E+05		1E+05		3E+04		2E+05		3E+05		6E+04		2E+05
Standard deviation		6E+04		4E+04		8E+03		5E+05		7E+04		1E+04		3E+04

Table 6: Resistance to groundable point, Samples 5 to 11

Note to sample 8: Voltage dependence was observed ($R_{gp} > 1 \text{ M}\Omega$ at 10 V when 100 V was applied)

7.2 Person/Footwear/Flooring System

Reference footwear:	Sievi Relax XL S147-52236-103-0PM
	(Person footwear system: $R_{\rm g} \sim 4 \text{ M}\Omega$).

Resistance to Groundable Point [4]

Test results are shown in Table 7. Electrification time was 15 s.

	Resistance to Groundable Point (MΩ)								
	Sample								
No	3 ref	4 ref	5	6	7	8	9	10	11
1	32	> 1	7	6	5	19	8	5	6
2	26	> 1	9	7	6	20	9	6	6
3	22	> 1	12	7	5	15	8	6	5
4	35	> 1	9	8	7	14	11	7	5
5	47	> 1	7	11	7	15	9	5	7
6	20	> 1	6	9	8	26	12	8	7
7	22	> 1	7	7	6	32	8	7	6
8	19	> 1	9	7	5	18	7	9	8
9	26	> 1	8	6	6	22	9	6	7
10	22	> 1	7	7	5	16	8	5	7
Minimum	19	> 1	6	6	5	14	7	5	5
Maximum	47	N/A	12	11	8	32	12	9	8
Median	24	N/A	8	7	6	19	9	6	7
Average	27	N/A	8	8	6	20	9	6	6
Geometric mean	26	N/A	8	7	6	19	9	6	6
Standard deviation	9	N/A	2	2	1	6	2	1	1

Table 7: Resistance to groundable point at 100 V

Body Voltage [4]

Averages of the five highest peaks during 60 s measurement sequences:

- Samples 3, 5, 6, 7, 8, 9, 10, 11: |*V*| < 100 V,
- Sample 4: |V| > 100 V.

Examples of six step walking pattern test results are shown in Figures 5 to 13.

Figure 13: Walking test, Sample 11

8. Summary and Conclusions

The sample boards (samples 5 to 11) met the requirements of flooring used to ground personnel and equipment in reference to IEC 61340-6-1:2018 [1].

The sample boards (samples 5 to 11) met the electrostatic protected area requirements in reference to IEC 61340-5-1:2016 [2].

Personnel grounding requirements of the person/footwear/flooring system (samples 5 to 11) were met with the tested person/footwear combinations (IEC 61340-5-1:2016) [2].

9. Discussion and Suggestions

The electrical conductivity of the flooring may be affected by cleaning with inappropriate materials or the usage of aftercare products. It is important to pay attention to the manufacturer's recommendation regarding cleaning and maintenance of the floor.

12/12

7.8.2020

10. References

- [1] IEC 61340-6-1: 2018, Electrostatics Part 6-1: Electrostatic control for healthcare General requirements for facilities
- [2] IEC 61340-5-1:2016, Electrostatics Part 5-1Protection of electronic devices from electrostatic phenomena General Requirements
- [3] IEC 61340-4-1:2003+A1:2015, Electrostatics Part 4-1: Standard test methods for specific applications Electrical resistance of floor coverings and installed floors
- [4] IEC 61340-4-5:2018, Electrostatics Part 4-5: Standard test methods for specific applications Methods for characterizing the electrostatic protection of footwear and flooring in combination with a person

